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1.      Introduction 

The purpose of this study was to explore an innovative data mining (DM) 
process for application in a breast cancer database.  The DM process is the Constraint 
Satisfaction Neural Network (CSNN). CSNNs are typically used for solving system 
optimization problems [1-4]. The proposed study is based on the hypothesis that 
mammographic diagnosis can be approached as a system optimization problem. 
Accordingly, a patient is modeled as a non-linear, dynamic system comprised of several 
components (e.g. clinical findings, personal and family history, mammographic 
findings, presence or absence of breast cancer). All components are coded into 
variables interconnected with constraints to keep the system stable. Typically, there is 
information about some system components (e.g. clinical and mammographic findings) 
and some questions need to be answered (e.g. Is there breast cancer?). Answering such 
questions is equivalent to finding the optimal values for the corresponding variables 
(i.e., lesion malignancy) so that the constraints are satisfied to a maximum extent and 
the system is stable. The CSNN is designed to solve such optimization problems. 
Furthermore, CSNN's non-hierarchical architecture allows it to be used not only as a 
prediction tool but also as an analysis tool for patient profiling. The proposed study 
aims to explore both promises witii a breast cancer database. 
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Body 

Statement of Work 

This is the final report for this project, which was originally a one-year concept project 
scheduled for completion by August 31,2002. During the funded period, a no-cost 
extension (till December 31, 2002) was approved to accomplish the following specific 
aims 

1. Develop a CSNN for mining a database of patients suspected with breast cancer 
who underwent breast biopsy; 

2. Evaluate the CSNN as a diagnostic tool; 

3. Evaluate the CSNN as a patient prototype analysis tool to discover prevalent trends 
and associations among the variables; 

4. Assess the network's robustness with missing data. 

The accomplishments of the entire effort will be summarized based upon these aims 

Overview of Progress for Each Aim 

Aim 1. First, we developed a CSNN to predict breast cancer malignancy based on 
patient's clinical findings and the breast lesion's mammographic presentation. 

Database: We utilized a database of consecutive patients who presented to diagnostic 
mammography with non-palpable breast lesions and referred for biopsy (core or 
excisional) at Duke Medical Center firom 1991 to 2000. There were in total 1,530 breast 
lesions with definitive histopathological diagnosis.. The mean patient age was 56 years, 
witii a range of 23-89 years. The database included 1,530 breast lesions of which 533 
(35%) were found to be malignant. The database contained 715 cases with masses, 
including 83 cases with calcifications in addition to a mass. There were 674 cases with 
calcifications only. The malignancy rate for masses and calcifications is similar (36% 
and 34% respectively). There were 141 cases with neither a mass nor a calcification. 
These lesions were reported as special findings (architechiral distortion, focal 
asymmetric density, etc.). 

Each breast lesion was described using ten mammographic findings from the BI- 
RADS™ lexicon [5]. The findings were: mass size, mass margin, mass density, mass 
shape, calcification description, calcification number, calcification distribution, special 
cases, associated findings, and quadrant location of abnormality. Six findings from the 
patient's medical history (age, menopausal status, use of replacement hormones, 
previous history of breast cancer, previous benign biopsy for breast cancer, family 
history of breast cancer) were also included in the database. In addition, for each case 
the database contained the ati:ending mammographer's assessment for the likelihood of 
malignancjr on a scale of 1 to 5. Note that this is different in form and intent firom the 
BI-RADS    clinical assessment. Finally, the malignant/benign result for each lesion was 
absti-acted from the pathology report and was entered into the research database. 
Complete mammographic and clinical findings were available for all 744 breast lesions 
m the dataset. For the remaining 786 lesions, there were only mammographic findings 
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available plus the patient's age at the time of diagnosis. The remaining clinical and 
history findings were unavailable for those patients. 

Data preprocessing: We converted the mammographic and clinical findings into a 
bmary input vector. For each patient, the input vector consisted of exclusively binary 
nodes 0 or 1 representing if a particular finding is present or not. The input findings 
were coded so that one neuron is assigned to each possible description for every 
finding. For example, according to the BI-RADS™ lexicon, there are four possible types 
of "mass shape". Four nodes were assigned to this BI-RADS^" finding, each one 
corresponding to a different type of mass shape (i.e., round, oval, lobulated, irregular). 
In addition, four separate neurons were assigned to correspond to the presence of 
masses, microcaldfications, special findings, and associated findings. The continuous 
findings such as patient age and mass size were represented as categorical data as well 
by bining the continuous values. Finally, one extira node was added to constitute the 
diagnosis. The diagnosis neuron took the value of 1 if breast cancer is present and the 
value of 0 if breast cancer is absent. We used only one neuron to represent diagnosis so 
that the CSNN can be used as a predictive rather than a classification tool. Binary 
format makes the data mining process easier. 

CSNN architecture: The CSNN is a Hopfield-type network [6]. The network consists of 
neurons arranged in a non-hierarchical struchire. Therefore, conb-ary to traditional 
predictive models, the CSNN does not have designated input and output neurons. The 
neurons are highly interconnected with symmetrical, bidirectional weights iw-=w). 
Given an optimization problem, the CSNN weights w-^ can be interpreted as tie ' 
problem constraints and every network state can be viewed as a possible solution. The 
CSNN network operates as a non-linear, dynamic system aimed to achieve global 
stability by assigning values to its neurons while the weights remain fixed. To achieve 
global stability, the CSNN employs a dynamic and iterative mechanism. The 
mechanism assumes that the activation level of all neurons can take any value in the 
range [0,1]. The CSNN is designed to maximize the activation of its neurons in relation 
to the constraints existing among them. To achieve this goal, the activation level of each 
neuron i is updated using the delta rule introduced by Rumelhart [7]. With this update 
rule, the network will restrict the activation levels to the [0,1] range and will evolve so 
that all neurons achieve their maximum possible activation while still satisfying the 
constraints imposed by the weights. The measure of global stability is a Lyaponov 
function E (referred to as "energy function") often used to describe the state of 
nonlinear dynamic systems [6]: 

^ J I I 

A dynamic system achieves a stable state when this function is minimized. In the 
CSNN context, the energy function is a measure of consti-aint satisfaction. The first two 
terms of £ describe the internal dynamics of the network. The last term is the penalty 
imposed by the external influences. 

A crucial step for developing a CSNN is determining the constraints weight matrix. 
The weight matrix contains the relations or constraints among all neurons. For this 
study we explored an autoassociative backpropagation (auto-BF) scheme that showed 
great potential before [8,9] and was also utilized in our pilot study [10]. When the 
training phase is complete, the autoassociative BP weights act as the CSNN constraints 
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satisfying the main conditions. Utilizing a backpropagation scheme to determine the 
CSNN constraints is highly innovative, overcoming the limitations of hard constraints 
typically associated with constraint satisfaction problems [1]. 

CSNN implementation: To accomplish specific aim 1, we implemented a CSNN with a 
total of 83 neurons. Each neuron represented a different description for every 
mammographic and clinical finding included in the database (as described in the data 
preprocessing section). One neuron was assigned to describe the malignancy status of a 
lesion. An auto-associative backpropagation neural network was also implemented to 
determine the CSNN constraints (as described in the previous section). 

Aim 2. Then, we applied the CSNN as a diagnostic tool for prediction of the breast 
biopsy outcome. In addition, we studied the effect of data sampling in the overall 
diagnostic performance of the CSNN.  

(1)      First, we applied a 50%-50% cross-validation sampling scheme. The dataset was 
randomly divided in two subsets (A and B). Initially, subset A was used to determine 
the CSNN constraints by applying the auto-associative backpropagation scheme 
described before. Then, the predictive ability of the CSNN was tested on subset B. For 
each test case, CSNN proceeded iteratively until its energy function was stabilized. At 
the end of the iterative process, the activation level achieved by tiie designated 
diagnosis neuron was used as a decision variable for Receiver Operating Characteristics 
(ROC) analysis. Then, the whole process was reversed so that subset B was used to 
determine the CSNN constraints and subset A was used to test the CSNN as a 
predictive tool. We used the ROCKIT software package developed by Metz et al. [11] to 
fit ROC curves to the final activation level of the CSNN diagnosis neuron. Table 1 
compares the CSNN to experienced mammographers. Several indices of diagnostic 
performance are presented: overall ROC area index, specificity at 95% sensitivity level, 
and the corresponding PPV at the same operating point. The ROC evaluation of the 
mammographers' performance was based on a gestalt, 5-point scale, categorical 
assessment of the likelihood of malignancy (NOT the BI-RADS assessment). 

Table 1 

CSNN 

Mammographers 

0.83 + 0.03 

0.82 + 0.02 

CAD MODEL        ROC Area Index        SPECIFICITY PPV 

47% 

37% 

49% 

45% 

(2)       Since our dataset spans almost a decade, we studied if there any differences in 
CSNN performance due to changes in patient population at our institution. First, we 
trained the CSNN on the initial 500 lesion (biopsied between 1991 and 1996). Then, we 
tested if the CSNN can achieve clinically acceptable diagnostic accuracy on the 
remaining 1,030 cases (biopsied between 1996 and 2000). It needs to be emphasized that 
from the 1,030 test cases, only 244 had complete mammographic and clinical findings. 
The remaining 786 cases had missing data. 

The results of the validation study are summarized in Table 2. The table shows the 
overall ROC area index A^ of the CSNN along with the partial area above a sensitivity 
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of 90% (o,9oAz)- The partial ROC area index for the high ser^itivity range is a clinically 
more meaningful performance index for this diagnostic problem. The table also 
mcludes the CSNN specificity at 95% sensitivity. For comparison the Table also 
mcludes the previously reported CSNN performance on the initial 500 cases according 
to a 50%-50% cross-validation sampling scheme. 

Table 2: Diagnostic Performance of the CSNN on the Train and Validation Sets 

Data Set A^lSTD     ^^^iSTD PPV 

at 95% Sensitivity 

hiitial 0.84+0.02      0.35±0.06 50% 

(500 cases) 

Validation 0.81+0.02      0.26+0.03 41% 

(1,030 cases) 

hi addition, the CSNN performance was analyzed separately according to the types 
of breast lesions (Table 3). Previous studies with a variety of artificial intelligence 
techniques have demonstrated that diagnostic performance varies substantially 
between masses and classifications. Specifically, CAD performance on breast masses is 
superior to that on calcifications. Similar trend was observed in our validation study as 
well. CSNN performance was significantly better on masses than on calcifications. 
However, compared to results on the initial 500 cases, the CSNN performance 
deteriorated slightly on masses but improved on calcifications. 

Table 3: CSNN diagnostic performance based on the type of lesions present. 

Type of Lesions 
No. of Cases 

in Initial Set 
No. of Cases in 

Validation Set INITIAL 
Az 

VALIDATION 
(% maligancy) (% maligancy) SET SET 

Masses only 232 (29.7%) 402 (35.6%) 0.93+0.02 0.90+0.02 
Calcifications only 192 (37.5%) 483 (31.5%) 0.65±0.04 0.70+0.03 
Masses with 

Calcifications 
29 (62.1%) 54 (50.0%) 0.83±0.08 0.75+0.07 

No Masses or 
Calcifications 

47 (31.9%) 91 (38.5%) 0.70±0.09 0.82+0.05 
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The above validation study was accepted for oral presenfation at the 2003 SPTF Mppting 
in Medical Imaging, San Diego CA. February 1.^-20. A ropy of the ronfprpnrp 
proceedings article is provided in the appendix fitem AY, 

Aim 3. Next, we evaluated the CSNN as a patient prototype analysis tool to discover 
prevalent trends and associations among the variables.   

This is the most exciting aspect of the study. The ability to use the network from 
"bottom-up" is very attractive compared to the backpropagation neural network. By 
selecting the neurons that accept external information, the CAD tool operator can 
interrogate the constraint satisfaction network and get more detailed explanations of ite 
decision reasoning. We demonstrated this quality by asking the network three 
prototypical questions. Given our database (i.e. lesions sufficiently suspicious of breast 
cancer to require mammographers recommend biopsy), what is the profile of a patient 
with breast cancer (BC)? What is the profile of a patient without BC? What is the 
profile of a "confusing" patient? Table 2 summarizes the results. For each prototype, 
only the activated variables are displayed. 

Table 4 

Activated Variables BC PRESENT BC ABSENT     UNCERTAIN 
Masses Yes 

marfjin 
shape 
density 
size 

Associated Findings 
Age. 
Menopausal Status 
Family Hx of BC 

Spiculated 
Irregular 
Mgh 
<10mm 

architectural distortion 
>70 yrs 
Post 

40-50 yrs 
Post 

>70 yrs 

Yes 
Post 
Yes 

To answer the first question ("What is the profile of a patient with BC?"), the activation 
level of the diagnosis neuron was set to 1.0 and the remaining neurons were left free to 
evolve until the network reached a stable state. None of the remaining neurons 
accepted external input. This is equivalent to using a backpropagation neural network 
from the "bottom-up". Table 2 shows which neurons were activated and reached 
maximum values indicating strong association with the particular diagnosis outcome 
(i.e., BC present, BC absent. Uncertain). 

The following hidden associations were discovered: 

1. The mammographic variables strongly correlated with cancer are architectural 
distortion and small, spiculated masses with irregular shape, and high density. 

2. The profile of a patient without breast cancer, is a younger female (40-50 yrs old), 
menopausal, without any family or personal history of BC, and without any lesions. 
Although it is not clinically surprising that the patient without BC has no masses or 
calcifications present, it is unexpected given that the majority of the cancer free 
patients in the database had some type of lesion present. This is an indication that 
the CSNN gives responses that are not necessarily statistical in nature. 
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3.  The profile of a "confusing" patient is also very informative. To acquire this profile, 
the activation level of the diagnosis neuron was set at 0.5. The neurons that were 
activated were the same ones as in the BC prototype with the exception of masses. 
Therefore, older age and family history of BC alone increase the risk of breast cancer, 
as it is clinically known. 

The data mining process can go one step further by controlling externally more than 
one neuron at a time. Table 3 shows the results of this process for breast cancer patients 
according to their breast lesion type (mass vs. calcification). To acquire those patient 
prototypes, three neurons (BC present, mass absent, calcification absent) were 
externally controlled and the remaining 80 neurons evolved until the network reached a 
stable state. Specifically, the second column shows that clustered, pleomorphic 
calcifications, architectural distortion, and focal asymmetric density are strongly 
associated with breast cancer. In the absence of masses or calcifications, the presence of 
architectural distortion and/or focal asymmetric density are high risk factors for breast 
cancer. 

Table 5 
BC PRESENT 

Activated 
Variables 

No Masses No Masses, No Masses, 
No No Calcifications, 

Calcifications      No Focal Asymmetric Density 

Calcifications 

distribution 

number 

description 

Associated 
Findings 

No No Yes 

clustered 

>10 

pleomorphic 

architectural 
distortion 

Special Findings    focal asymmetric    focal asymmetric    No 
density density 

Family Hx of BC   Yes Yes 

architectural 
distortion 

architectural distortion 

Yes 

The potential to use CSNN for data profiling is very exciting and we chose to explore it 
further. Specifically, we applied the CSNN to profile patient clusters. Initially, a self- 
organizing map (SOM) was used to identify clusters in a large, heterogeneous 
computer-aided diagnosis database based on mammographic findings (BI-RADS™) and 
patient age. The resulting clusters were then characterized by their prototypes 
determined using the CSNN. The patient clusters showed logical separation of clinical 
subtypes such as architectural distortions, masses, and calcifications. Moreover, the 
study showed such identification and profiling of subgroups within a database could 
help elucidate clinical trends and facilitate future decision model building. Specifically, 
the study showed that broad categories of masses and calcifications were stratified into 
several clusters. The percent of the cases that were malignant was notably different 
among the clusters. A feed-forward back-propagation artificial neural network (BP- 

10 
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ANN) was used to identify likely benign lesions that may be candidates for follow up 
rather than biopsy. The performance of the BP-ANN varied considerably across the 
nn^^^f identified by the SOM. In particular, a cluster was identified that accounted for 
79% of the recommendations for follow up that would have been made by the BP-ANN. 

The above study where the CSNN was utilized for patient profiling has been arrepf-pd 
for pubhcation m Artificid Intellwence in Medicine.. A copv of the manuscript is provided 
in the appendix (item Rl 

Aim 4. Finally, we assessed the CSNN's robustness with missing data. 

As explained in the data description, the majority (786/1,030) of breast lesions in our 
database are missing the patients' clinical findings. The ROC area index of the CSNN 
was evaluated separately on the cases with complete findings and on those with 
incomplete clinical findings. As expected, the ROC area index was lower in cases with 
missmg data (Az=0.80+0.02) than in those with complete findings (Az=0.84±0.03). The 
difference was statistically significant at the 95% confidence level. Similar trend was 
observed with the partial ROC area indices. 

The next table presents the effect of missing data in detail, according to the type of 
breast lesions present. The table shows that the missing data did not affect the overall 
performance of the network on "mass only" cases. The CSNN performance on 
calcifications was slightly better for lesions with complete findings, however the 
difference was not statistically significant. A notable difference in performance was 
observed for the "masses with calcifications" category. However, the small number of 
cases in this category does not allow conclusive remarks. This is also the case for 
lesions without masses or calcifications present ("neither"). 

Table 6: CSNN performance according to the type of lesions present for cases with 
complete and incomplete findings 

Masses        Calcifications       Masses + Neither ALL 

only only Calcifications 

Train 0.93 ±0.02 0.65 + 0.04 0.83 ±0.08 0.70 ±0.09 0.84 ±0.02 

Validation 0.88 ±0.02 0.70 ±0.03 0.75 ±0.07 0.82 ±0.05 0.81 ±0.02 

Complete 0.88 ±0.03 0.73 ±0.07 1.0 0.81 ±0.12 0.84 ±0.03 

Incomplete 0.87 ±0.02 0.70 ±0.03 0.63 ±0.09 0.83 ±0.05 0.80 ±0.02 

The non-hierarchical architecture of the CSNN makes possible its utiHzation on cases 
with partially missing data. Other predictive models require an additional technique to 
impute the missing data before a case is tested.  Contrary, the CSNN does not require 

11 
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such step. Specifically, the CSNN can be applied to reconstruct simultaneously not only 
the correct diagnosis but also any missing components of a given clinical case. This is 
an exciting possibility for clinical databases with missing data. Imputing missing data 
is an important issue that tends to compromise the performance of a decision model. 

We tested the accuracy of the CSNN to impute missing data while performing as a 
diagnostic tool. We focused on imputing the patient age. Previous studies have shown 
that the patient age is the sbrongest predictive clinical factor of malignancy . We tested 
the CSNN on the same 1,030 validation cases. However, the CSNN neurons that 
represent patient age were left to evolve without any external influences. Therefore, we 
simulated an experiment where the CSNN was asked to perform as a diagnostic tool 
while imputing simultaneously a very important predictive finding (i.e., patient age). 

Although the overall performance of the CSNN deteriorated (Az=0.78±0.02), it was still 
able to predict breast lesion malignancy with sufficient accuracy. Furthermore, the 
CSNN was able to impute the missing patient age accurately in 30% of the cases. In 
69% of the cases, the CSNN imputed patient age within adjacent age groups. Table 6 
summarizes the results of this experiment. The table shows the correct and CSNN 
predicted age groups for all patients in the validation set. 

Table 7: CSNN accuracy on imputing the missing patient age while performing the 
diagnostic task 

Patient Age No. of cases in Accuracy Accuracy 

Groups each age group (± l age group) 

<=40yrs 

(40,50] 

(50-60] 

(60,70] 

>70yrs 

82 14.6% 51.2% 

321 32.0% 69.5% 

276 37.3% 68.8% 

196 18.4% 85.7% 

155 34.8% 56.8% 

TOTAL 1,030 29.9% 69.0% 

The above results are included in the SPTF proceedings article that is provided in the 
appendix. 

12 
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3.      Key Research Accomplishments  

This research resulted in the following major accomplishments: 

♦  By modeling decision making as a system optimization problem, we were able to 
utilize an innovative neural network that views the patient as a dynamic system 
without designated input and output neurons (non-hierarchical architecture). The 
CSNN can predict the activation status of some neurons based on the known status 
of the remaining neurons and the known nature of interactions in the system. We 
demonstoted this quality by applying the CSNN as a decision support tool to 
decide the malignancy statiis of a suspicious breast lesion. The CSNN was very 
effective as a diagnostic tool showing performance similar to that of experienced 
mammographers. 

Its non-hierarchical architectiire allowed the CSNN to be utilized as a knowledge 
discovery tool. Decoding hidden data ti-ends and associations may help physicians 
understand beti:er and refine established clinical judgment patterns. We 
demonstirated this potential by applying the CSNN as a patient profiling tool. 

We demonsti-ated the potential of applying the CSNN as a computer aid to unprove 
upon the diagnostic accuracy of the radiologists for their decision to biopsy a 
suspicious breast lesion. While maintaining 95% sensitivity for cancers, the model 
could have obviated 47% of the benign biopsies. 

Finally, we evaluated the impact of missing data in the overall diagnostic 
performance of the CSNN. In addition, the CSNN ability to effectively impute 
missing clinical data while performing as a predictive tool was verified successfully. 

♦ 

♦ 

♦ 

13 



PI: Georgia D. Tourassi, Ph.D. 

4.      Reportable Outcomes  

Publications: 

The following publications resulted directly from this work. They consist of a peer- 
reviewed journal article and a conference proceedings article. They have both been 
accepted for publication. Copies are attached as appendices A and B. 
1. M.K Markey, J.Y. Lo, G.D. Tourassi, C.E. Hoyd, Jr., "Self-Organizing Map for 

Cluster Analysis of a Breast Cancer Database," accepted for publication in Artificial 
Intelligence in Medicine [12/02]. ■' 

2. G.D. Tourassi, M.K. Markey, and J.Y. Lo, "Validation of a constraint satisfaction 
neural network for breast cancer diagnosis: New results from 1030 cases," accepted 
for oral presentation at the 2003 SPIE Medical Imaging Conference, San Diego, CA 
15-20 February. ° ' 

Personnel Receiving Salary: 
1.   Georgia D. Tourassi, PhD, (PI) 

Funding: 

The following applications for funding resulted directly from this research. 
1. Idea Award, NIH/NCI, "Computer-assisted recommendation to breast biopsy " PI 

?f-f/i?BoT?n''^^1' co-investigators Baker JA, Lo JY, et. al., direct costs $250,000, 
4/1 / U3-3/ 31 / 05. The grant application received a non-fundable score (240). 

14 
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5.       Conclusions 

This research resulted in several major advancements in the fields of data mining 
and breast imaging. At present, diagnostic mammograms are used to determine if a 
suspicious breast lesion should be sent to biopsy or follow-up. However, the majority of 
biopsies (65-85%) performed due to suspicious mammograms are found to be benign 
[12,13]. Several attempts have been made to develop computer-assisted diagnostic 
(CAD) models that help physicians improve the cost-effectiveness of their decision to 
send a suspicious breast lesion to biopsy [14,15].  Most CAD efforts focus on traditional 
backpropagation neural networks and expert systems. 

In this project, we investigated a novel CAD approach that exploits non-linear 
dynamic system principles. The CAD technique is based on the Constraint Satisfaction 
Neural Network (CSNN) and it approaches breast cancer diagnosis as a constraint 
satisfaction problem. Our study demonstrated that the CSNN combines three 
important qualities for a successful CAD system: 
(1) Accuracy - the CSNN performed as well as other CAD models previously published 

in the literature. 
(2) Interpretability - Its non-hierarchical architecture allows the CSNN to be utilized as a 

knowledge discovery tool. Decoding hidden data trends and associations helps 
make the CSNN decision making process transparent to the user, thus facilitating 
clinical acceptance. 

(3) Adaptability - For a given patient, the CAD operator can choose which neurons need 
prediction without further re-training or re-organizing of the neural network. 
Consequently, the CSNN is an appropriate decision model for clinical databases 
with missing data. It can pursue decision modeling while simultaneously imputing 
any missing clinical findings. 

There are several promising future directions for this research project. First, it 
would be interesting to evaluate if the CSNN can actually improve the diagnostic 
performance of physicians by maintaining high sensitivity in predicting lesion 
malignancy while significantiy reducing the number of unnecessary benign biopsies. 
Second, considering the recent trend to boost CAD performance by combining decision 
models, CSNN is a great candidate to join a pool of expert systems such as 
backpropagation neural networks, case based reasoning, and linear statistical 
techniques due to its inherently different theoretical foundation. A unified CAD tool 
that combines various decision models that "think" differently has a better chance to 
succeed since the models may complement each other. Finally, some exciting studies 
are possible if the CSNN is appHed beyond diagnosis. Due to its inherent system 
optimization framework, the CSNN can be used with complete databases that include 
information on the patient's prognosis, treatment planning, and survival. For a given 
patient, the CAD operator can choose wliich neurons need prediction (i.e., diagnosis, 
treatment planning, prognosis). The CSNN can adapt easily to the decision task as ' 
dictated by the CAD operator because it has a non-hierarchical architecture. Ultimately, 
we envision this CAD tool developed on a large, comprehensive, and population 
diverse database, helping cHnicians individualize the whole process of diagnostic 
management by exploring several hypothetical scenarios and choosing the one that 
optimizes survival outcome. 
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Validation of a Constraint Satisfaction Neural Network for Breast 
Cancer Diagnosis: New Resulte From 1,030 Cases 
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^Department of Biomedical Engineering, University of Texas, Austin, TX 78712 

ABSTRACT 

Previously, we presented a Constraint Satisfaction Neural Network (CSNN) to predict the outcome of breast biopsy 
using mammographic and clinical findings. Based on 500 cases, the study showed that CSNN was able to operate not 
only as a predictive but also as a knowledge discovery tool. The purpose of this study is to validate the CSNN on a 
database of additional 1,030 cases. An auto-associative backpropagation scheme was used to determine the CSNN 
constraints based on the initial 500 patients. Subsequently, the CSNN was applied to 1,030 new patients (358 patients 
with malignant and 672 with benign lesions) to predict breast lesion malignancy. For every test case, the CSNN 
reconstructed the diagnosis node given the network constraints and the external inputs to the network. The activation 
level achieved by the diagnosis node was used as the decision variable for ROC analysis. Overall, the CSNN 
continued to perfom well over this large dataset with ROC area of Az=0.81±0.02. However, the diagnostic 
performance of the network was inferior in cases with missing clinical findings (Az=0.80±0.02) compared to those 
with complete fmdings (Az=0,84±0.03). The study also demonstrated the ability of the CSNN to effectively impute 
missing fmdings while performing as a predictive tool. 

Keywords: computer-aided diagnosis, neural networks, breast cancer, constraint satisfaction 

1.   INTRODUCTION 

Mammography is considered the most effective technique for early breast cancer diagnosis. Patients with early- 
detected malignancies have a significantly better prognosis [1,2]. Accordingly, physicians err on the side of caution 
and typically refer to biopsy all patients with unresolved suspicious fmdings in their diagnostic mammograms. 
However, the majority of biopsies (65-85%) performed due to suspicious mammograms are found to be benign [3-6]. 
The economic cost, physical burden, and emotional stress associated with excessive biopsy of benign lesions have 
been reported before [7-15], Furthermore, another well-documented problem is the variabiHty among radiologists 
regarding the clinical management (biopsy vs. follow-up) of suspicious breast lesions [16-19]. 

The application of computational techniques for the diagnostic interpretation of mammograms is one of the most 
active fields of research. The end product is typically a computer-aided decision (CAD) tool aimed to provide 
physicians with a reliable second opinion during their decision to biopsy a breast lesion. In a previous study, we 
developed a Constraint Satisfaction Neural Network (CSNN) to predict the outcome of breast biopsy based upon 
mammographic and clinical fmdings [20]. In a clinical setting, such predictive tool could assist radiologists in their 
decision to refer a patient suspected with breast cancer to biopsy or short-tern follow-up. Our studies showed that the 
CSNN allows us to explore predictive modeling as the optimization of a non-linear dynamic system [20]. 
Furthermore, the CSNN was used not only as a predictive tool but also as a flexible knowledge discovery tool 
decoding hidden data trends and associations. These studies were based on a limited set of 500 patients with complete 
mammographic and clinical fmdings. However, it remained uncertain whether the CSNN could be useful in larger 
patient samples with incomplete findings. 

In the present sttrfy, we collected 1,030 consecutive clinical cases and used them as a validation test for the 
CSNN, First, we trained the CSNN on the original 500 cases. Then, we tested if the CSNN can achieve clinically 
acceptable diagnostic accuracy on the validation set. In addition, the effect of missing data was evaluated in more 
detail. 

SPIE USE, V, 2 5032-23 (p, 1 of 8) / Color: No / Format; Letter/ AF: Letter / Date: 2003-01-15 11:54:00 



Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special charaders are correct and (4) all text and finorps fit within th*. 
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submlSon    ^ ' ^ *® 

2.   MATERIALS AND METHODS 

2.1        The Constraint Satisfaction Networlc 

The CSNN architecture has been described in detail before [20], The CSNN is an auto-associative, Hopfield-type 
network [21] with neurons arranged in a non-hierarchical structure (Figure 1). Therefore, contrary to traditional 
predictive models, the CSNN does not have designated input and output neurons. The neurons are connected with 
symmetrical, bidu-ectional weights iw,f^Vjt) but there are no reflexive weights (w„=0). The CSNN network operates as 
a non-lmear, dynamic system aimed to achieve global stability by determining the activation status of its neurons 
while the weights remam fixed. The CSNN weights describe the problem constraints while eveiy network state is a 
possible solution to the problem, A problem is solved when the network achieves a globally stable state without 
violating the constraints. 

AUTO-BP 

findinp 

diaposis 

-►   wij - bidirectional weight between two nodes 

■^   external input to a CSNN node 

Figure 1: The CSNN architecture with the autoassociative bacicpropagation (aato-BP) training scheme 

To acWeve global stability, the CSNN employs a dynamic and iterative mechanism. The mechanism assumes that 
the activation level of all neurons can take any value in the range [0,1]. The CSNN is designed to maximize the 
activation of its neurons in relation to the constraints existing among them. To achieve this goal, the activation level 
of each neuron / is updated using the delta rule introduced by Rumelhart [22]. With fliis update rule, the network will 
restrict the activation levels to the [0,1] range and will evolve so that all neurons achieve their maximum possible 
activation while still satisfying the constraints imposed by the weights. The measure of global stability is a Lyaponov 
function often used to describe the state of nonlinear dynamic systems [21]. A dynamic system achieves a stable state 
when this function (known as Energy) is minimized. In the CSNN context, the energy fimction is a measure of 
constraint satisfaction. 

A crucial step for developing a CSNN is determining the constraints weight matrix. The weight matrix contains 
the relations or constraints among all neurons. For this study we applied an autoassociative backpropagation (auto- 
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BP) scheme. The auto-BP network is a simple perceptron without hidden layers. The input and output layers have an 
equal number of nodes (N). During the training phase, the auto-BP leariB to map any given pattern to itself using the 
back-propagation technique for gradient descent with the sigmoid activation function. When the training phase is 
complete, the autoassociative BP weights act as the CSNN constraints. Utilizing a backpropagation scheme to 
determine the CSNN constraints is highly innovative, overcoming the limitations of hard constraints typically 
associated with constraint satisfaction problems. 

2.2 Data 

The dataset consisted of non-palpable, mammographically suspicious breast lesions that underwent biopsy (core 
or excisional) at Duke University Medical Center from 1991 to 2000. There were in total 1,530 breast lesions with 
definitive histopathological diagnosis. The first 500 lesions (biopsied between 1991 and 1996) were used as the 
training set. The remaining 1,030 lesions (biopsied between 1996 and 2000) were consecutive cases and they were 
used as the validation set. The prevalence of breast cancer was flie same (35%) in both sets. Table 1 provides some 
basic statistics regarding the training and validation sets. Breast lesions identified as "neither" in Table 1 represent 
special cases such as architectural distortion, regions of asymmetric breast density, areas of focal asymmetric density, 
and areas of asymmetric breast tissue. 

Table 1: Comparison of the train and validation datasets 

Data Set Train Set Validation Set 

Total Number of Cases 500 1,030 

Malignancies 174(35%) 359(35%) 

Mean Age (yr) 55.5 55.9 

Age Range 24-86 23-89 

Mass cases 46% 39% 

Calcification Cases 38% 47% 

Masses with calcifications 6% 5% 

Neither 9% 9% 

Mammographic and chnical data were collected for each breast lesion according to collection procedures 
described before [20]. Briefly, for every lesion, expert mammographers reported the mammographic findmgs 
according to the BI-RADS lexicon [23], Each BIRADS finding (with the exception of mass size) has a categorical 
rating, A higher rating typically represents a higher likelihood of malignancy. Patient age and history findings were 
also collected. In total, sixteen mammographic and clinical findings were recorded for each patient. Table 2 hsts the 
fuuiings selected to describe each case. 

Complete mammographic and clinical fmdings were available for all 500 breast lesions in the train set. In the 
validation set, there were only 244 lesions (32.4% malignancy rate) with complete findings. For the remaining 786 
lesions (35,5% maMgnancy rate), there were only mammographic fmdings available plus the patient's age at the time of 
diagnosis. The remainuig clinical and history findings were unavailable for those patients. 

All fmdings were converted into a binary input vector. A separate CSNN neuron was assigned to each possible 
rating for every finding. The two continuous findings (age and mass size) were represented as categorical data [20], 
Specifically, mass size was coded in seven possible nodes. Each node corresponded in mass size increments of 10 mm. 
Similarly, patient age was coded in five nodes (<40yrs, 40-50, 50-60, 60-70, and >70 yrs old). In addition, one extra 
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neuron was added to constitute the diagnosis. The diagnosis neuron took the value of 1 if breast cancer was'present 
and the value of 0 if breast cancer was absent. We used only a single diagnosis node so that the CSNN can be iKed as 
a predictive rather than a classification tool. In total, 83 CSNN neurons were used to represent the problem. 

Table 2: Findings used to represent a breast lesion 

Rtommographic Findinp Value Range        Clinical Findinp Value Range 

1. Calcifications Distribution 0-5 

2. Calcifications Number 0-3 

3. Calcification Morphology 0-14 

4. Quadrant Location of Abnormality 0-4 

5. Associated Findings 0-9 

6. Special Cases 0-4 

7. Mass Margin 0-5 

8. Mass Shape 0-4 

9. Mass Density 0-4 

10. Mass Size mm 

11. Patient Age 

12, Family Hx of BC 

13, Personal Hx of BC 

14, Hx of Benign Biopsy 

15. Menopausal Status 

16. Hormone Therapy 

years 

0-1 

0-1 

0-1 

0-1 

0-1 

2,3 Performance Evaluation 

During the development or "training" phase, the CSNN constraints were determined using the backpropagation 
autoassociative (auto-BP) network. The auto-BP network had an input layer and an output layer of 83 nodes each. 
Initially, the weights were randomly initialized and biases were set to 0. The auto-BP was then trained according to 
the backpropagation algorithm using the train set (i.e., the fkst 500 breast lesioim). After the auto-BP weights and 
biases were determined, the weights served as the CSNN constraints. Next, the CSNN was applied as a predictive tool 
on the validation set (i.e,, the remaining 1,030 lesions). For each test case, the CSNN network was used to predict the 
biopsy result based on the network's constraints (the weight matrix determined by auto-BP) and the external inputs 
(the available medical findings for each case). If a particular finding was present, then the corresponding external 
influence was active and set equal to 1.0, Initially, the activation levels of all CSNN neurons were randomly 
initialized. Then, available patient findings served as external inputs. The diagnosis neuron did not accept any 
external information and it was left to evolve based only on internal influences. Similarly, if there were missing 
cUnical and history findings, then the corresponding neurons were left to evolve without any external influences. 

At each iteration, the CSNN energy function was monitored to determine the stability of the network. In the end 
of the iterative process, the activation level achieved by the diagnosis neuron was used as the decision variable for 
Receiver Operating Characteristics (ROC) analysis. We used the ROCKIT software package developed by Metz et al. 
(http://xray,bsd.uchicago.edu/krl/toppagell.htm) to fit ROC curves to the activation level achieved by the CSNN 
diagnosis neuron. 
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3.   RESULTS 

3.1        Diagnostic Performance 

The resulte of the validation study are summarized in Table 3. The table shows the overall ROC area index Az of 
the CSNN along with the partial area above a sensitivity of 90% (ojoAz), The partial ROC area index for the high 
sensitivity range is a clinically more meanii^ful performance index for this diagnostic problem The table also 
includes the CSNN positive predictive value (PPV) at 95% sensitivity. For comparison the Table also includes the 
previously reported CSNN performance on the initial 500 cases according to a 50%-50% cross-validation sampling 
scheme. 

Table 3: Diagnostic Performance of the CSNN on the Initial and VaUdation Sets 

Data Set Az ±STD o.9«Az±STD PPV 

at 95yo Sensitivity 

Initial 0.84±0.02        0.35±0.06 

(500 cases) 

Validation 0.81±0,02        0.2640.03 

(1,030 cases) 

50% 

41% 

In addition, the CSNN performance was analyzed separately according to the types of breast lesiom (Table 4) 
Previous studies with a variety of artificial intelligence techniques have demonstrated that diagnostic performance 
varies substantially between masses and classifications [20,24,25]. Specifically, CAD performance on breast masses 
IS supenor to that on calcifications. Similar trend was observed in our validation study as well. CSNN performance 
was significantly better on masses than on calcifications. However, compared to the previous study [20], the CSNN 
performance deteriorated slightly on masses but improved on calcifications. 

Table 4: CSPW diagnostic performance based on the type of lesions present 

Type of Lesions No. of Cases No, of Cases Az Az 

(% mal^ancy) (% maligancy) XNITIAL VALIDATION 

INITIAL SET VALIDATION SET SET SET 

Masses only 232 (29.7%) 402 (35,6%) 0.93d^.02 0.88±0.02 

Calcifications only 192(37.5%) 483(31.5%) 0.65±0.04 0.70±0.03 

Masses w/ Calcifications 29(62.1%) 54 (50.0%) 0,83±0.08 0.75±0.07 

No Masses or Calcifications 47(31,9%) 91 (38.5%) 0.7at0.09 0.82±0.05 

3.2 Effect of Missing data 

As explained in the data description, the majority (786/1,030) of breast lesions in our validation database are 
missmg the patients' clinical findings. The ROC area index of the CSNN was evaluated separately on the cases with 
complete findings and on those with incomplete clinical findings.  As expected, the ROC area index was lower in 
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cases with missing data (A2=0,80±0.02) than in those with complete tindings (Az=0.84±d:03), Similar trend "was" 
observed with the partial ROC area indices. Table 5 summarizes these findings. 

Table 5: Effect of Missing Data on the Diagnostic Performance of the CSJW. 

Cases Number Az±STD      o.»oAz±STD PPV 

(Vo malignancy) at 95»/o l&nsitivity 

Complete 244(32,4%) 0,84 ±0,03       0,27 ±0.08 

Incomplete 786(35.5%) 0,80 ±0.02       0,25 ±0.04 

41.6% 

39.5% 

The next table presents the effect of missing data in more detail, according to the type of breast lesions present. The 
table shows that the presence of missing data reduces overall CSNN diagnostic perfonnance. However, the difference 
was not statistically significant, A notable difference in performance was observed for the "masses with 
calcifications" category. However, the small number of cases in this category does not allow conclusive remarks. 
This is also the case for lesions without masses or calcifications present ("neither"). 

Table 6: CSNN performance according to the type of lesions present for cases with complete and incomplete 
findings 

Masses only   Calcifications only Masses+Caldflcatlons       Neither ALL 

Initial set 

Validation set 

Complete 

Incomplete 

0,93 ± 0.02 

0,88 ±0,02 

0,91 ± 0.03 

0.87 ± 0,02 

0,65 ± 0.04 

0.70 ±0.03 

0,73 ± 0.07 

0.70 ± 0,03 

0,83 ± 0.08 

0.75 ± 0.07 

1.0 

0.63 ± 0,09 

0.70 ±0,09 

0,82 ±0.05 

0.81 ±0,12 

0.84 ±0,02 

0.81 ±0.02 

0.84 ±0.03 

0,83 ±0.05     0,80 ±0.02 

3.3 Ability to Impute Missing Data 

The non-hierarchical architecture of the CSNN makes possible its utilization on cases with partially missing data. 
Other predictive models require an additional technique to impute the missing data before a case is tested. Contrary, 
the CSNN does not require such step. Specifically, the CSNN can be applied to reconstruct simultaneously not only 
the correct diagnosis but also any missing components of a given clinical case. This is an excitmg possibility for 
clinical databases with missing data such as in our study. Imputing missing data is an important issue that tends to 
compromise the performance of a decision model. 

We tested the accuracy of the CSNN to impute missing data while performing as a diagnostic tool. We focused 
on imputing the patient age. Previous studies have shown that the patient age is the strongest predictive clinical factor 
of malignancy [26]. We tested the CSNN on the same 1,030 validation cases. However, the CSNN neurons that 
represent patient age were left to evolve without any external influences. Therefore, we simulated an experiment 
where the CSNN was asked to perform as a diagnostic tool while imputing simultaneously a very important predictive 
finding (i.e., patient age). 

Although the overall performance of the CSNN deteriorated (A2=0,78±0.02), it was still able to predict breast 
lesion malignancy with sufficient accuracy.   Furthermore, the CSNN was able to impute the missii^ patient age 
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accurately in 30% of the cases. In 69% of the cases, the CSI^N imputed patient age within adjacent age groups. Table 
7 summarizes the results of this experiment. The table shows the true and CSNN predicted age groups for aU patients 
in the validation set. 

Table 7: CSNN accuracy on imputing the missing patient age while performing the diagnostic task 

Patient Age No. of cases Accuracy Accuracy 

Groups        j„ ggj.|, ggg group (± 1 age group) 

<=40yrs 82 14.6% 51.2% 

(40,50] 321 32.0% 69.5% 

(50-60] 276 37.3% 68.8% 

(60,70] 196 18.4% 85.7% 

>70 yrs 155 34.8% 56.8% 

TOTAL 1,030 29.9% 69.0% 

4.   DISCUSSION 

In a previous study, we demonstrated the potential of ming the Constraint Satisfaction Neural Network as a 
pr^ictive and data mining tool for breast cancer diagnosis. The study utilized a cross-validation sampling scheme and 
a limited dataset of 500 breast lesions. The purpose of the present study was to validate the CSNN on a separate 
dataset of consecutive cases. 

Overall, the CSNN performed well on the validation set as in the previous limited study. The previomly reported 
trend of significantly better perfoimance with masses than calcifications was successfully verified in the validation 
study. Some deterioration in perfoimance was observed. However, the inferior performance can be attributed to two 
main factors. First, the vahdation set included more calcification than mass cases. Second, the majority of the 
validation cases had missing clinical fmdings. The effect of missing findings was studied in detail. The CSNN ability 
to effectively impute missing clinical data while performing as a predictive tool was verified successfully. 

To summarize, the study reaffirmed the potential of using the CSNN as an effective predictive tool in breast 
cancer diagnosis. The ability to use the CSNN as predictive tool while simultaneously imputmg any missing clinical 
fmdings makes the CSNN a promising alternative network for computer-aided diagnosis, 

5.   ACKNOWLEDGEMENTS 

This work was supported by the U,S. Army Medical Research and Materiel Command grant DAMD17-01-1-0516, 

6.   REFERENCES 

S, Shapiro, "Screening: assessment of current studies," Cancer 74,231-238 (1994). 

A, L, M. Verbeek, J. H. C, L. Hendriks, R. Holland, M. Mravunac, F, Sturmans, and N. E. Day, "Reduction of 
breast cancer mortality through mass screening with modem mammography," Lance/ 1,1222-1224 (1984), 

D. D. Adler, and M, A. Helvie,  "Mammographic biopsy recommendations," Current Opinion in Radiologv 4 
123-129(1992). ^^   ' 

D. B. Kopans, "The positive predictive value of mammography," AJRAm JRoentgenol 158,521-526 (1992), 

SPIE USE, V. 2 5032-23 (p.7 of 8} / Color: No / Format: Letter/AF: Letter/ Date: 2003-01-15 11:54:00 



StllS IS"*y ^K^^ ^''^ all pages are present. (2) all figures are acceptable, (3) all fonts and special characters are correct and (4) all text and fioures fit wittiin the 
margin lines shown on this review document Return to your MySPIE ToDo list and approve or disapprove this submission ^ 

7. 

8. 

9. 

10. 

11, 

12. 

13. 

14, 

15, 

16. 

17. 

18. 

19. 

20, 

21. 

22, 

23. 

24. 

25. 

26, 

S, Ciatto, L, Cataliotti. and V. Distant©,  "Nonpalpable lesions detected with mammography: review of 512 
consecutive cases " Radiology 165, 99-102 (1987), 

Knutzen AM, and Gisvold JJ,   "Likelihood of maUgnant disease for various categories of mammographically 
detected, nonpalpable breast lesions," Mayo Clin Proc 68,454-460 (1993), 

Bassett LW, Bunnell DH, Cemy JA, and Gold RH, "Screening mammography: referral practices of Los Angeles 
physiciaiw," AJRAmJRoentgenol 147,689-692 (1986). 

F. M, Hall, "Screening mammography - potential problems on the horizon," NEJM 314,53-55 (1986). 

F. M, Hall, J. M. Storella, D. Z, Silverstone, and G, Wyshak, "Nonpalpable breast lesions: recoimnendations for 
biopsy based on suspicion of carcinoma at mammography," Radiology 167, 353-358 (1988). 

Cyrlak D, "Induced costs of low-cost screening mammography," itef/ology 168,661-3 (1988). 

Sickles EA, "Periodic mammographic follow-up of probably benign lesions: results in 3,184 consecutive cases" 
Radiology 179,463-468 (1991), 

Varas X, Leborgne F, and Leborgne JH,  "Nonpalpable, probably benign lesions: role of follow-up 
mammography," Radiology 184,409-414 (1992), 

Helvie MA, Ikeda DM, and Adler DD, "Localization and needle aspiration of breast lesions: complications in 370 
cases," ^i? ^m J iteen/gewon 57,711-714 (1991), 

Dixon JM and John TG, "Morbidity after breast biopsy for benign disease in a screened population," Lancet 1 
128(1992). 

Schwartz GF, Carter DL, Conant EF, Gannon EH, Finkel GO, and Feig SA, "Mammographically detected breast 
cancer: nonpalpable is not a synonym for inconsequential," Cancer 73,1660-1665 (1994). 

Bird RE, Wallace TW, and Yankaskas BC, "Analysis of cancer missed at screening mammography," Radiolom 
184,613-617(1992). e- F .;. s^ 

Burhenne HJ, Burhenne LW, Goldberg D, Hislop TG, et al, "Interval breast cancer in screening mammography 
program in British Columbia: analysis and calcification," AJR^wj J Roentgenol 162,1067-1071 (1994). 

Elmore J, Wells M, Carol M, Lee H, et al, "Variability in radiologists' interpretation of mammoarams" New 
fiwglawrfJMerf 331,1493-1499 (1994), 

Berg WA, Campassi C, Langenberg P, Sexton MJ, "Breast imaging reporting and data system: Inter- and 
intraobserver variability in feature analysis and final assessment,"AJR ^mJi?oenfgeno/174,1769-1777 (2000), 

Tourassi GD, Markey MK, Lo JY, and C.E. Floyd, Jr. "A Neural Network Approach to Breast Cancer Diagnosis 
as a CoiKtraint Satisfaction Problem," MerfPtys 28, 804-811, (2001). 

Golden RM, "Deterministic Nonlinear Dynamical Systems Analysis," in Mathematical Methods for Neural 
Network Analysis and Design, edited by R.M, Golden, (The MT Press, Cambridge, MA. 1996), 115-142. 

Rumelhart DE, Smolensky P, McClelland JL, Hinton GE, "Schemata and sequential thought processes," in 
Parallel Distributed Processing: Explorations in the Microstructures of Cognition (Vol. 2).  edited by D E 
Rumelhart and J.L, McClelland (The MIT Press, Cambridge, MA, 1986), 7-75. 

American College of Radiology, "Breast Imaging Reporting and Data System," Reston, VA; American College of 
Radiology, (1996), 

Bilska-Wolak A, Floyd CE Jr., "Breast Biopsy predictions using a case-based reasoning classifier for masses 
versus classifications," SPIE Proceedings, Medical Imaging 2002, Vol. 4684,661-665 (2002). 

Markey MK, Lo JY, Floyd CE, "Differences between computer-aided diagnosis of breast masses and that of 
calcifications," Radiol 223: 489-493 (2002). 

Lo JY, Baker JA, Komguth PJ, Floyd CE, "Effect of patient history data on the prediction of breast cancer fi 
mammographic findings with artificial neural networks." AcadRadiol 6,10-15 (1999). 

rom 

SPIE USE, V. 2 5032-23 {p.8 of 8) / Color: No/ Format: Letter/AF: Letter/ Date: 2003-01-15 11:54:00 



Self-Or^nizing Map for Cluster Analysis of a Bre^t Cancer Database 
Mia K. Markey^'^, Joseph Y. Lo^'^, Georgia D. Tourassi^, and Carey E, Floyd Jr.^'^ 

* Department of Biomedical Engineering, Duke Univereity, 
Durham, North Carolina 277(» 

^ Digital Imaging Research Division, Dejmrtment of Radiology, Duke University 
Medical Center, Durham, North Carolina 27710 

Corresponding author and reprint address: 

Mia K. Markey 
ENS617B COmO 
Department of Biomedical Engineering 
The University of Texas at Austin 
Phone:+1,512.471.1711 
Fax: +1.512.471.0616 
email: mia.markey@mail.utexas.edu 



Abstract 

The purjxjse of this study was to identify and characterize clusters in a heterogeneous 

breast cancer computer-aided diagnosis database. Identification of subgroups within the 

database could help elucidate clinical trends and facilitate future model building. A Self- 

Organizing Map (SOM) was used to identify clusters in a large (2258 cases), 

heterogeneous computer-aided diagnosis database based on mammographic findings (BI- 

RADS ™) and jmtient age. The resulting clusters were then characterized by their 

prototypes determined using a Constraint Satisfaction Neural Network (CSNN). The 

clusters showed logical separation of clinical subtypes such as architectural distortions, 

masses, and calcifications. Moreover, the broad categories of masses and calcifications 

were stratified into several clusters (seven for masses, three for calcifications). The 

percent of the cases that were malignant was notably different among the clusters 

(ranging from 6% to S3%). A feed-forward back-propagation artificial neural network 

(BP-ANN) was used to identify likely benign lesions that may be candidates for follow 

up rather than biopsy. The performance of the BP-ANN varied considerably across the 

clusters identified by the SOM. In particular, a cluster (#6) of mass cases (6% malignant) 

was identified that accounted for 79% of the recommendations for follow up that would 

have been made by the BP-ANN. A classification rule based on the profile of cluster #6 

performed comparably to the BP-ANN, providing approximately 25% specificity at 98% 

sensitivity. This performance was demonstrated to generalize to a large (2177) set of 

cases held-out for model validation. 

Index terms: self-organizing map, cluster analysis, breast cancer, computer-aided 
diagnosis 



1. Introduction 

There is considerable interest in the use of computational techniques to aid in the 

detection and diagnosis of breast cancer [5,8,26]. Most computer-aided diagnosis 

(CAD) studies, including this one, focus on mammography since it is the primary tool for 

the detection of breast lesions and the subsequent decision to biopsy suspicious lesions. 

The decision to biopsy is complicated by the fact that breast cancer can present itself in a 

variety of ways on a mammogram and there is considerable overlap in the appearance of 

benign and malignant lesions. CAD systems for the decision to biopsy that are based on 

findings extracted by radiologists are often trained and evaluated over heterogeneous 

databases that reflect this variability in the morphological appearance of suspicious breast 

lesions [1,7,28]. We have recently shown that a CAD tool trained on such a 

heterogeneous database can perform very differently on two broad subgroups which 

constitute most of the currently biopsied lesions: masses and microcalcifications [17]. In 

particular, we observed that the performance was significantly better on masses than on 

calcifications. 

In this study, we used a self-organizing map (SOM) [13] to identify clustere in a 

heterogeneous breast cancer CAD database. SOM is an unsupervised learning method 

that relates similar input vectors to the same region of a map of neurons. To the best of 

our knowledge, SOMs have not been used to identify clusters in a CAD database similar 

to the one presented here. SOMs have been used for other t^ks in breast cancer CAD 

such as a benchmark for model selection [27] and to predict biopsy outcome [4]. 

Once the SOM was used to identify the clusters, a constraint-satisfaction neural 

network (CSNN) was used to characterize the clusters by determining a profile for each 



cluster. Briefly, the CSNN is a Hopfield-type network of neurons arranged in a non- 

hierarchical way (Figure 1). There are symmetric, bidirectional weights between all pairs 

of neurons but there are no reflexive weights. The CSNN operates as a nonlinear, 

dynamic system that tries to reach a globally stable state by adjusting the activation levels 

of the neurons under the constraints imposed by the a priori fixed weight values. A 

cluster "profile" provides a description of a "typical" c^e in the cluster. We have 

previously introduced CSNN for predicting biopsy outoome and as a data mining tool for 

breast cancer CAD databases [25]. 

A feed-forward back-propagation artificial neural network (BP-ANN) is a classic 

technique that is commonly used in breast cancer CAD systems. Consequently, a BP- 

ANN was used to predict the biopsy outcome [2, 10, 21] and the performance of the BP- 

ANN was compared on the clusters identified by the SOM and profiled by the CSNN. 

A clustering algorithm such as an SOM followed by a cluster characterization 

method such as CSNN profiling could serve as tools in the initial phases of a divide-and- 

conquer approach to the computer-aided diagnosis of brej^t cancer. Both modular and 

ensemble methods could be used for a divide-and-conquer approach. A modular system 

uses multiple classifiers to solve a classification problem by partitioning the input space 

into smaller domains, each of which is handled by a local model [24]. The local models 

can be thought of as experts for a particular kind of case. Ensemble methods are 

resampling schemes in which the same cases are used in training multiple experts, whose 

predictions are then combined [24]. Such approaches may be justified in light of recent 

results in this field. Simple ensembles of classifiers using voting or averaging to combine 

their predictions have shown promise in computer-aided detection of breast masses [14, 



22,31]. Zheng et al employed a modular scheme, in which the data were partitioned by 

a difficulty measure, for computer-aided detection of breast masses with encouraging 

results [30]. Zheng et al. also investigated a promising ensemble of modular models, 

formed by taking the average of the predictions from modular models in which the data 

were partitioned using three features [29]. Huo et al. described a modular system, in 

which the data were partitioned by a spiculation measure, which was superior to a general 

image-based computer-aided diagnosis system [11,12]. Finally, we have recently 

demonstrated that a BI-RADS™-based CAD tool built on a heterogeneous database can 

I«rform very differently on two broad subgroups of lesions, ms^ses and 

microcalcifications [17]; the CAD tools investigated performed better on masses than on 

calcifications. In all of the examples listed here, a priori knowledge was used to partition 

the data into subsets. Unsupervised learning may provide an alternate avenue to a priori 

knowledge for identifying subsets in the data that should be handled separately in the 

development or evaluation of computer-aided diagnosis or detection systems. 

2. Materials and Methods 

2.1. Data 

Approximately half of the available data (4435) were used for model development 

(22^) in this study in order to withhold the remaining data for additional maiel 

validation (2177); the data were randomly partitioned into the training and validation 

sets, but attention was paid to key summary statistics such as the fraction of cases that 

were malignant in each set. For each lesion, the benign or malignant status from 

pathologic diagnosis was known. The overall malignancy fraction was 43%. In the next 



few paragraphs, we describe the data (2258) used for model development in greater 

detail. 

The first data set consisted of 751 non-palpable, mammographically suspicious 

bre^t lesions that underwent biopsy (core or excisional) at Duke University Medical 

Center from 19^ to 2000. The data collection procedures have teen previously 

described [16]. Briefly, expert mammographers described each case using the Breast 

Imaging and Reporting Data System (BI-RADS ~) lexicon [20], Each of the cases w^ 

read by one of 7 readere. When a lesion could be descrited by multiple descriptors (e.g., 

pleomorphic and punctate), the mammographers were requested to report the descriptor 

that was most suspicious for malignancy (e.g., pleomorphic). Of the 751 cases, 260 

(35%) were malignant. 

The second data set consisted of 501 mammographically suspicious breast lesions 

that underwent excisional biopsy at the University of Pennsylvania Medical Center from 

1990 to 1997. The data collection procedures have been previously described [16]. 

Briefly, each of the cases was read by one of 11 expert mammographers who described 

each case using the BI-RADS ™ lexicon [20]. When a lesion could be described by 

multiple descriptors (e.g., pleomorphic and punctate), the mammographers were 

requested to report the descriptor that was most suspicious for malignancy (e.g., 

pleomorphic). Of the XI cases, 200 (40%) were malignant. 

The third data set consisted of 1(X)6 biopsy-proven breast lesions randomly 

selected from the Digital Database for Screening Mammography [9]. Expert 

mammographers described each case using the BI-RADS ™ lexicon [20]. Lesions that 

were described by multiple descriptore were encoded for our purposes using the 



descriptor that was most suspicious for malignancy. Of the 1(X)6 cases, 522 (52%) were 

malignant. 

Specifically, the six BI-RADS ™ features collected describe the mass margin, 

mass shape, calcification morphology, calcification distribution, ^sociated, and special 

findings. Missing values were encoded as zero. Each BI-RADS™ feature w^ encoded 

using uniformly scaled rank ordered categories (Table 1). For example, when a mass is 

present for a case, the mass margin can take on one of five values: well circumscribed 

(1), microlobulated (2), obscured (3), ill-defined (4), or spiculated (5). In addition to the 

BI-RADS ™ features, the patient age was collected, for a total of seven features. 

2.2. Self-Organizing Map 

A self-organizing map relates similar cases (input vectors) to the same region of a 

map of neurons [13], The SOM was computed using the SOM toolbox in MATLAB® 

(The MathWorks Inc., Natick, MA). The basic SOM consisted of 16 neurons arranged in 

a single layer in a 2-D square grid of 4 by 4 neurons, but different configurations were 

considered. For each case, the Euclidean distance between the case and e^h neuron was 

calculated based on the seven input features (the biopsy outcome was not provided to the 

SOM). For input to the SOM, each feature was scaled by subtracting the mean and 

dividing by the standard deviation, resulting in each scaled feature having mean zero and 

standard deviation of one. After the most similar neuron was determined the neurons in 

its neighborhood were identified. The neighborhood of a neuron was defined as all the 

neurons within a given link distance of the matched neuron. All the neurons in the 

neighborhood were adjusted to have feature values closer to the current case. The 

amount that the neuron weights were adjusted was controlled by the learning rate. The 



learning rates and distance threshold values used were the default values for the SOM 

toolbox. 

2.3. Constraint Satisfaction Neural Network 

After the clusters were identified, a CSNN was used to determine the profiles of 

the clusters [23,25]. Custom software in the C language was used to implement the 

CSNN and has been previously described [25], The Lyapunov energy function was used 

as a measure of the network stability. It was found that 1CX30 iterations were sufficient to 

achieve stability. The weights were predetermined using autoassociative 

backpropagation neural networks (auto-BP). In keeping with our previous work [251, the 

auto-BP networks were trained with a learning rate of 1.0 for 1(X) iterations and the root 

mean squared training error was approximately 0.1 (network outputs between 0 and 1). 

For each cluster, a CSNN was used to generate a profile. Each category of the 

categorical BI-RADS ™ features corresponded to a binary variable and associated neuron. 

For example, the mass margin with its five non-rero categories was represented by five 

separate neurons. Patient age was translated into a discrete variable with five levels (< 40 

years, 40 < x <:», 50 < x < «), 60 < x < 70, > 70 years) [25]. An additional neuron was 

used to signify cluster membership.    The activation level of the neuron indicating cluster 

membership was set to the maximal value and the other neurons were allowed to evolve 

until the network reached a stable state. The feature neurons that were activated defined 

the profile of the cluster. A profile is a list of feature values that succinctly summarizes 

the cluster and defines a "typical" case (e.g., mass margin is well circumscribed, mass 

shape is round, and patient age is between S3 and 83 years). All cases in the cluster don't 

exactly match the profile; there is still a distribution of feature values. Notice that unlike 



common summary statistics, such as the cluster centroid, the CSNN profile implicitly 

includes feature selection; only features deemed relevant to the network for describing a 

cluster are included. 

2.4. Back-Propagation Artificial Neural Network (BP-ANN) 

A feed-forward Imck-propagation artificial neural network (BP-ANN) was used to 

predict the biopsy outcome from the mammographic findings and jmtient age. The BP- 

ANN was trained to minimize the sum-of-sqiiares error using the back-propagation 

algorithm [2, 10,21]. The network had a single hidden layer of 14 neurons and each 

neuron in the network used a logistic activation function. The network inputs (7) were 

the BI-RADS ™ features and patient age. Network inputs were rescaled to 0 to 1 (by 

subtracting the minimum value and dividing by the maximum minus the minimum). The 

biopsy outcomes were the network targets; there was one output node indicating 

malignancy. The 22^ cases were presented to the network in a round-robin manner 

(leave-one-out, k-fold cross-validation with k = N) and training ended before the average 

testing error on the left-out cases began to increase. The custom neural network software 

used was written in C++ by members of our laboratory, and the training and testing 

process has been reported previously [15, 17], 

2.5. Receiver Operating Characteristic 

Receiver Operating Characteristic (ROC) curves can be used to show the trade-off 

in sensitivity and specificity achievable by a classifier by varying the threshold on the 

output decision variable [18, 19]. The area under the ROC curve is often used m a 

measure of classifier performance. In evaluating models for diagnosing breast cancer, all 

sensitivities are not of equal interest. Only techniques that perform with veiy high 
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sensitivity would be clinically acceptable since missing a cancer (false negative) is 

generally considered much worse that an unnecessaiy benign biopsy (false positive). 

Thus, particular attention was paid to the specificity at 98% sensitivity. 

The ROC curves were calculated non-parametrically. P-values and standard 

deviations on the sfrecificity at 98% sensitivity were estimated by bootstrap sampling on 

the decision variable [6]. 

3. Resulte 

Figure 2 illustrates the arrangement of the neurons in the SOM. The set of cases 

that were mapped to a neuron defined a cluster. Figure 2 shows the number of cases that 

were mapped to each neuron, i.e., the number of cases in each cluster. The fraction of the 

cases in each cluster that were malignant is also shown in Figure 2 (bottom number in 

italics). The malignancy fraction is not shown for the clustere with fewer than 10 cases 

(#5, 12, and 15), on the assumption that no meaningful conclusions can be drawn from 

such a small number of cases. Inspection of the cases mapped to these clusters (#5,12, 

and 15) revealed that the cases are rare for this database. They included cases with 

findings that were seen with a very low prevalence in the set {e.g., special finding of 

intramammary lymph node) or reflected incomplete or inconsistent data (e.g., the 

calcification morphology was described but calcification distribution feature was not 

reported). Together these three clusters comprise only 0.5% of the cases. Therefore, no 

further analysis was performed on these clustere. Recall that the SOM was not provided 

with the biopsy outcome information. The differences in the malignancy fraction are a 

reflection of differences in the Bl-RADS ™ features and patient age between the clusters. 

Cluster malignancy rates near 50% do contain some information since the overall 
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malignancy fraction was 43%. Notice that there is generally a higher incidence of 

malignant lesions in the clusters on the righthand side of the map. 

Figure 3 shows the effect that changing the SOM architecture has on the clusters 

identified. Alternative architectures allow one to vary the number of neurons as well as 

their topological layout, thus potentially allowing for variations in the complexity of the 

model. One alternative to a 4 x 4 SOM is a smaller but still square 3x3 SOM (Figure 

3a). In figure 3b, the clusters of the 3 x 3 and 4 x 4 SOMs are compared using a bubble 

plot. For each case, the neuron it mapped to was determined for each SOM. The number 

of cases for each pair of clusters between the two SOMs was plotted; the size of the circle 

indicates the number of cases. The more large bubbles that are present in such a plot, the 

more the SOMs agreed on the clustering of the cases. Similarly, figures 3c and 3d show 

the comparison with a 5 x 5 SOM. Linear trends (i.e., bubbles lining up along the 

diagonals) indicate that the same cases are being mapped to the same region (e.g., upper 

right-hand area) in the two SOMs. In <«idition to square topologies, other layouts were 

also investigated which utilized approximately the same number of neurons. 

Comparisons were made to a 2 x 8 SOM and to a three-dimensional SOM of 2 x 3 x 3 

neurons, toth with approximately the same number of neurons as the 4 x 4 square SOM. 

For the 4 X 4 SOM, the cluster profiles generated by the CSNN are shown in 

Figure 4. Each cell in the table represents the feature categories that were dominant or 

most strongly associated with the cases matching that cluster. Profiles were not computed 

for the clusters with very few cases. The mass cases arc distributed over neurom #2,3,4, 

6,7, and 8, The profiles of neurons #9, 13,14, and 16 indicate that those clusters contain 

microcalcifications. Neuron #1's profile indicates that that cluster is comprised of focal 
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asymmetric densities. Note that the profile for neuron #10 includes only the age variable. 

The profile for neuron #11 reveals that the lesions in that cluster are architectural 

distortions. 

An alternative approach to generating cluster profiles is to compute summary 

statistics such as the feature mode (or mean for real-valued features such as age). Figure 

5 shows the mode profiles of the clusters identified by the 4 x 4 SOM. For the most part, 

there is considerable agreement between the CSNN and mode profiles. Most of the 

differences correspond to adjacent categories in the features (Table 1) where the CSNN 

has selected the second most prevalent value for the profile. However, using multiple 

methods to summarize the clusters may be beneficial. For example, the CSNN profile of 

neuron #16 (Figure 4) dms not include any mass features yet the feature mode profile 

(Figure 5) shows that the mass features are usually non-zero. In fact, inspection of the 

cases in the cluster defined by neuron #16 reveals that they are calcified masses. 

Conversely, the CSNN profile for neuron #10 (Figure 4) includes only the age variable 

while the mode profile's (Figure 5) inclusion of values for the calcification variables may 

be misleading for this small cluster (N = 29) where there is little dominance by any single 

value. 

A BP-ANN was trained to predict the biopsy outcome from the BI-RADS ™ 

features and patient age. Figure 6 shows the ROC curve for the BP-ANN. The SOM can 

also be used to generate a malignancy prediction [4]. For each case, the prediction w^ 

the fraction of the cases that were malignant in the cluster that the case was mapped to by 

the SOM. For example, if a case belonged to cluster #4 in which 83% of the c^es were 

malignant, then the classifier output for that case would be 0.83. Notice that using this 



13 

approach limits the number of operating points on the non-parametric ROC curve to the 

number of clusters with unique malignancy fractions minus one (Figure 6). The 

performance at the highest sensitivities was comparable. In particular, at 98% sensitivity 

the SOM operates with 0.26 ± 0.03 specificity and the BP-ANN operates with 0.25 ± 

0.03 specificity (p = 0.93). 

Figure 7 lists how the BP-ANN trained on all the cases performs in terms of the 

BP-ANN's recommendations for follow up instead of biopsy on the subsets identified by 

the SOM. A threshold was applied to the BP-ANN outputs such that the overall 

sensitivity was approximately 98% (965/982) with resulting specificity of approximately 

24% (303/1276). In other words, 320 cases (303 actual negatives and 17 actual positives) 

fell below the threshold. These 320 cases that the BP-ANN would have recommended 

for follow up are shown in Figure 7 according to which SOM cluster they belonged. 

Notice that there is considerable variability in the performance on the clusters. In 

particular, the majority of the cancers that the BP-ANN would have referred to follow up 

(11/17 = 65%) and the majority of the benign lesions that the BP-ANN would have 

spared biopsy (242/3(B = 80%) were in the cluster defined by neuron #6, 

These interesting results with the cluster defined by neuron #6 suggested that a 

simple rule-based apprcmch could be valuable. We developed a classification rule based 

on the cluster profiles (Figures 4 and 5) of neuron #6 and a Classification And 

Regression Tree (CART) [3] model for mass cases using the implementation in S-PLUS® 

(Insightful Corp,, Seattle, WA), The classification rule was: if the m^s margin was well- 

circumscrited or obscured and the age was less than 59 years and there were no 

calcifications, associated findings, or special findings, then don't biopsy, otherwise do 
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biopsy. On the 2258 training cases, this rule gave 961 / 982 = ^% sensitivity and 336 / 

1276 = 26% si^cificity. In other words, this rule performed comimrably to the BP-ANN 

with a threshold of 0.1842 (965 / 982 = 98% sensitivity, 3(B /1276 = 24% specificity). 

The performance of the BP-ANN and the classification rule developed from data 

mining were evaluated on the 2177 cases withheld for model validation. On the 

validation set, the ctesification rule gave 886 / ^)4 = ^% sensitivity and 339 /1273 = 

27% specificity and the BP-ANN with a threshold of 0.1842 gave 884 / 904 = m% 

sensitivity and 296 /1273 = 23% specificity. Thus, both the BP-ANN and the rule-based 

approach generalized and they performed comparably at this high sensitivity ix>int. 

4. Discussion 

Considerable variability was seen in the fraction of the cases that were malignant 

from cluster to cluster. Several clusters had malignancy fractions that were notably 

different from the fraction of the entire data set (43%). One of the major gcals of 

computer-aided diagnosis of breast cancer is to identify very likely benign cases as 

candidates for follow-up in lieu of biopsy, in order to reduce the number of benign 

biopsies. Therefore, the clusters with very low malignancy fractions (e.g., neuron #6 

with 6% malignant) are dominated by such very likely tenign lesions and may he of 

particular interest for further studies. It is possible to use the clusters and their 

malignancy fractions directly as a tool for predicting biopsy outcome [4]. For each case, 

the prediction was the fraction of the cases that were malignant in the cluster that the c^e 

was mapped to by the SOM (Figure 6), For very high sensitivities, this prediction 

scheme (98% sensitivity, 0.26 ± O.CB specificity) was competitive with the back- 

propagation artificial neural network (98% sensitivity, 0.25 ± 0.03 specificity, p = 0.93); 
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however, this SOM-based method was not superior to the BP-ANN. The SOM 

prediction method in conjunction with the CSNN profihng method has the potential 

advantage that physicians may understand the intuition behind it better than they do the 

BP-ANN, which is often seen as a "black box". The SOM prediction method, similar to 

a case-based reasoning system, predicts the probability of malignancy of a new case by 

reporting the fraction of similar c^es that were found to be malignant [7]. The SOM 

prediction method could also potentially be used in an ensemble of classifiers. If the 

outputs of two classifiers are not strongly correlated, it is possible that they could be 

combined to produce a classifier that is better than either of its component ctosifiers. 

The effects of the changing the SOM architecture were investigated (Figure 3). 

As indicated by the presence of large circles in the bubble plots, the SOMs with similar 

architectures showed substantial agreement in clustering the data Moreover, the 

presence of linear trends in the comparisons with the 5 x 5,2 x 8, and 2 x 3 x 3 SOMs 

suggest that similar SOM architectures result in similar geometric relationships between 

clusters. These data argue that the clustering is relatively insensitive to the SOM 

architecture for this problem. It should be noted that this study did not focus on the 

organization of the clusters into a topological map. Consequently, many of the analyses 

in this study could have been performed using other clustering algorithms. 

Figure 4 lists the CSNN profiles for the clusters identified with the SOM. The 

successful separation of a priori known, coarse lesion typ«s (masses, clustered 

microcalcifications, focal asymmetric densities, and architectural distortions) provided 

some quality assurance of the clustering. Clusters were further identified within the 

general group of mass lesions, reflecting different combinations of the mass margin, mass 
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previous work demonstrating i^rformance differences with axi a priori partitioning of the 

data into two broad subgroups of lesions, masses and microcalcifications [17] and 

suggests that further work should be done to investigate building cluster-specific models. 

The variation in the BP-ANN performance ^ross the clusters could also influence the 

ultimate clinical implementation of the decision aid since it may not be useful to apply 

the BP-ANN to cases similar to those groups of cases for which it always recommended 

biopsy in the training set. Interestingly, the SOM identified a cluster of mass cases (#6) 

which accounted for the majority cases that the BP-ANN would have recommended for 

follow up rather than biopsy. Recall that the identification of likely benign cases that 

could be spared biopsy is the goal of such computer-aided diagnosis schemes. This 

suggests that the SOM clustering and CSNN profiling technique could be used to provide 

the physician with an alternative description of what the BP-ANN does for certain types 

of c^es. The identification of a single cluster that accounted for the majority of the cases 

that the BP-ANN would have recommended for follow up also suggeste the investigation 

of rule-based methods to identify relatively simple diagnostic criteria which might be 

applied to these cases to aid the radiologists in their decision making process. Based on 

the profiles of the clustere identified by the SOM, we developed a simple classification 

rule that performed comparably to the BP-ANN (approximately 25% specificity with 

^% sensitivity). Moreover, we demonstrated that the classification rule generalized to 

2177 cases withheld for model validation. 
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shape, and patient age variables. The cluster profiles that included calcification features 

showed stratification of the general group of calcification lesions only by patient age and 

not any of the calcification findings. Notice that while some features may not be 

considered useful by the CSNN for profiling individual clusters, it is possible that they 

could be useful to other summarizing techniques or to methods designed to describe the 

differences between clusters. 

An alternative approach to characterizing the clusters is to calculate summary 

statistics for e^h of the features. Figure 5 shows the mode for each of the BI-RADS ™ 

features and the mean of the patient age for each cluster. In general, there is good 

agreement in the cluster descriptions obtained from these summary plots and the CSNN 

profiles. However, they are not identical. The most notable differences are for neurons 

#10 and #16, which show the advantages and disadvantages respectively of the fact that 

the CSNN method inherently includes feature selection. 

It may be easier to interpret a CSNN profile, with typically only a few dominant 

features per cluster, than to interpret as many summary values as there are input findinp. 

Note as well that the CSNN takes into the account interdependencies between the 

features, while the summary statistics were based on each feature independently. CSNN 

profiles or summary statistics can be used to quickly sort through the resulte of a 

clustering technique, but additional characterization may be appropriate for clusters of 

jmrticular interest. 

Classification based on the SOM was competitive to that achieved by the BP- 

ANN at high sensitivity levels (Figure 6). Notable variation in the performance over the 

clusters identified by the SOM was observed (Figure 7). This is consistent with our 
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